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On Bogoliubov's model of superfluidity 

N Angelescutt, A Verbeure and V A Zagrebnovs 
Instituut voor Theoretirhe Mica, Katholieke Universiteit Leuven, B-3W1 Leuven, 
Belgium 

Received 1 2  November 1991, in final form 26 February 1992 

Abstract. We point out that the conventional Bogoliubw model contains an attractive 
effedive interaction, putting into question its stability. For positive chemical potentials 
we show instability, making the model unsuitable for explaining superfluidity from first 
principles. We present an extended model, yielding rigorously the relevant spectrum for 
supcrlluidity. 

1. Iotmductioo 

In order to explain physical phenomena like superfluidity, one is faced with the usual 
two-body boson interaction problem and with showing for it the existence of a Bose 
condensation phase transition. Indeed, the existence of the Bose condensate in liquid 
4He has been established in neutron-deep inelastic scattering experiments [1-4] and 
later confirmed by x-ray measurements 151. Rigorous results in this field are known 
for the free boson gas [6] and the imperfect boson gas [7-91 together with refinements 
of these models [IO-131. Very few rigorous results are known for the general case of 
boson models with two-body interaction potentials-see e.g. 114-181. 

A pragmatic procedure for the description of the properties of superfluids, e.g. 
the derivation of the experimentally observed spectra, was initiated in Bogoliubov's 
classical papers [19,20], where he considered a truncated interaction, giving rise to 
what will be called the Bogoliubov model. For the reader's convenience and in 
order to establish notation we shall summarize the main steps of this procedure in 
section 2. On the basis of perturbation theory and variational estimates (see section 3) 
one can check that the Bogoliubov model contains an afrrucfive effective interaction 
term. This raises the question of whether the model describes a stable nature. For 
negative values of the chemical potential, a (finite) upper bound for the pressure 
is derived in section 3. Based on a variational lower estimate for the pressure, we 
show in section 4 that the model Hamiltonian is unstable for positive values of the 
chemical potential. This makes the model unsatisfactory for the purpose of explaining 
the phenomenon of superfluidity; indeed, positive chemical potential is an essential 
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condition in order to give a meaningful account of the right excitation spectrum (i.e. 
gapless, linear for small momentum and presenting a ‘roton’ minimum). On the 
other hand, for negative chemical potential, the variational pressure (which is the 
output of the pragmatic procedure referred to above) equals the free gas pressure. 
We conclude that Bogoliubov‘s model is essentially equivalent, in the grand-canonical 
ensemble, to the free boson gas. Finally, in section 5 we give the “ i n i a l  extension’ 
of the Bogoliubov model which ensures a reasonable thermodynamics for all chemical 
potentials and show that the physically relevant results on superfluidity are recovered 
in the extended model. 

2. A brief account of Bogoliubov’s approach 

The main idea underlying Bogoliubov’s theory of superfiuidity is that switching on 
interactions in a condensed boson gas may change drastically the collective excitation 
spectrum without, however, destroying the Bose condensate. The starting point of 
the formalism is accordingly a boson gas interacting via a weak two-body potential, 
the Hamiltonian of which is truncated such that only terms which become important 
in the presence of the condensate are maintained. 

More precisely, the main steps in this approach are the following (we refer to 
Bogoliubov [19,20] and e.g. to Hugenholz [21] for more details). 

(i) Truncation. Let us consider a system of identical bosons of mas m in a cubic 
box A c R3 of volume V = L3, with periodic boundary conditions. If 6(z) denotes 
the two-body interaction potential and 

then its secondquantized Hamiltonian acting in the Fock space 3, can be written as 

where dl sums run over the set 
2n 
L X , = { k E R 3 : k o = - n o ,  n a E Z ,  c r = 1 , 2 , 3 } .  

Here t k  = lk12/2m is the kinetic energy, and a;, ak are the usual boson creation 
and annihilation operators in the one-particle state &(z) = V-’’zeik2,  k E X ,  
and I E A; i.e. a; E a*(+,.) = J tdz3k(z)a’ (~) :  a#(z) are the basic boson 
operators in the Fock space over L2(Iw3). 

If one expects Bose-Einstein condensation (more precisely, macroscopic occupa- 
tion of the k = 0 mode (uEao)HA Y V for the finite-volume Gibbs state ( - ) H A  

defined by (2.2)) then, according to Bogoliubov, the most important terms in (2.2) 
should be those in which at least two operators R ; , R ,  appear. One is thus led to 
consider the following truncated Hamiltonian: 

(2.3) 
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(ii) Bogoliubov approximation. Further simplification of this Hamiltonian can be 
achieved, according to Bogoliubov, from the observation that a ; / n  and a 0 / n  al- 
most " m u t e  for large V ,  so that they could be replaced in a macroscopic system by 
complex numbers F and c respectively, to be determined self-consistently. Therefore, 
in this approximation H f  - p N A ,  where N A  = C k a ; a k ,  becomes 

+ c2uiaTk + ~ ~ a - ~ a ~ ]  - plc12v + +v(0) lc l4v .  (2.4) 

(iu) Diagonalization. By performing a gauge transformation ak Y aLelV 
(p = arg c), one can replace c in (2.4) by IcI. We shall henceforth use the new 
variable x = IC[', having the physical meaning of condensate density. The hilinear 
Hamiltonian 7ff(,/E, p )  can be diagonalized by the well known Bogoliubov canonical 
transformation ak = ukbk + ~ ~ b : ~ ,  leading to 

(2.5) 
1 

f i : ( , / E , P )  = x E k b j b k +  ~ ~ ( E k - f ~ ) - p X V +  ) V ( o ) X 2 v .  

k#O k#Q 

Here E, and f k  are functions of z and p defined as follows: 

and the corresponding coefficients of the transformation are 

(2.9) u2 - 1 
v2  k -  - 1 2 ( f k / E k - 1 ) .  k - = j ( f k / E k  + l) 

Of course, this step makes sense only if fk > h, for all k 0 such that v(  k )  # 0 
(otherwise the Bogoliubov transformation is trivial+ee (2.9)); this constrains x to 
L - L - ~  .- .L- -..~--..n I \ - I- x n .  ..,n\-, .. _ : _ _  1 Uerulrg tu t11G suusc, u A ( p )  = ,"5 + " . "(",A 2 p- r u l l r s k , .  

(iv) Interpretation. Finally one has to determine x and p from conditions like, for 
example, minimum ground-state energy for (2.5) and prescribed particle density p. 
This is done approximately by supposing, again by Bogoliubov's proposal, that all 
particles are condensed at zero temperature: 

k#O 

x = p .  (2.10) 

On the other hand, from first-order calculations of the ground-state energy [21], the 
subsidiay condition yields 

P = V ( 0 ) P .  (2.11) 
.lC.L .L--- ^^^ t."" 
W l U I  111e:bc va1uCa VUG ll'u 

E,=, = 0 and E,  - [pv(O) /m] ' / * lk l  for k + 0 .  (2.12) 

This structure of the collective excitation spectron explains, according to Landau's 
criterion [22], the superfluid properties of the system. 
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3. The stability of Hi and an upper bound for the pressure 

We shall work under the following assumptions on the interaction potential 4, ex- 
pressed in terms of its Fourier transform, (2.1): 

(+ )u(q)  is a real continuous function with bounded support, satisfying u ( 0 )  > 0 
and 0 < V(Q) = v(-q) 6 u ( 0 )  for all q E W3. 

Under these (in fact, even under weaker) conditions it is known [23] that 4 is 
superstable and hence that the grandcanonical partition function asociated with the 
full Hamiltonian (2.2) 

~ A ( P , P )  = Tr exp[-@(HA - pNA)l 

is finite for all real p and all ,B > 0, 
As far as we are aware, the analogous study of the truncated Hamiltonian HF 

given by (2.3) has not been undertaken. A preliminary step in this direction is the 
following rough estimate. 

Propsttion 3.1. Suppose (4). Then, for every p < 0 and A sufficiently large, 
Iff - p N A  is bounded from below the self-adjoint operator in FA .. and the following 
inequality 'holds: 

Hence, by regrouping terms in (2.3) 

(3.3) 

For p < 0 and A such that m i n k E K n  [ e k  - p - & u ( k ) ]  > U, aii terms but t'he 
last in this expression are positive self-adjoint operators with forms having a dense 
intersection of domains, while the last is a small form-perturbation, from which the 
fist part of the proposition follows [24]. The simple lower bound in (3.1) is obtained 
by discarding the second and third terms in (3.3), which are positive, and using the 
assumption ~ ( q )  < v(0) .  0 
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An immediate consequence is the following upper bound for the pressure. 

Corollary 3.2. For p < 0, 

where p o (  p, p )  is the free gas pressure, 

p o ( P , p )  = p - ' /  !03 In(1 - e - a ( ' ~ - ~ ) ) - ' d 3 k / ( 2 r ) 3 ' z .  (3.5) 

The last term on the right-hand side of (3.4) vanishes for jt < -$4(0) so, for such (I 

PB(p,P) ,< P O ( P ' P ) .  (3.6) 

To relax the upper bound on the chemical potential in (3.6) we represent the 
operator (3.3) in the form % ? ) ( U )  + W,, where 

(3.7) 
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Using an explicit expression (3.7) for ' ~ j e ' ( p )  one gets 

If [p+b4(0) ]  4 0, then sup in (3.12) is attained at ir, = 0. So, P ' ~ ) ( P , ~ )  = p o ( p ,  p )  
and by (3.10) we again get the estimate (3.6). The same result persists for the weaker 
condition 

c1+ 4+(0) 4 inf [v (o )P ,  + I J ( w ) ~ , P , ( o ,  c 1 -  ~ J ( o ) P ~ ) I .  (3.13) 

To get the estimate of the pressure p B ( p , p )  from below we again use the Bo- 
P O 2 0  

goliubov inequality 
1 1 
V 

(3.14) 
where TA = C k ~ k a j a k  is the Hamiltonian of the ideal boson gas. The expectation 

-(Hi - T A ) H : - p N ,  < - p N A ]  - - pNAl < - TA)Th-pNn 

on fie right-hand side of (3,i4j can be caicu;ai& expiiciiiy: 

For P < 0 there is no Bose-condensation in the ideal boson gas, i.e. 
1 'im v ( " O ) T , - p N ,  = ( P  < 0). 

Consequently, by (3.14) and (3.16) we get for p < 0 

(3.16) 

- n  - v .  (3.17) %:-. , r r B  m 8 
""'- \"A - ' A / T n - p N n  v v  

Hence, (3.14) and (3.17) give the following estimate: 
PO(P3P)  < p B ( P , r i )  P < 0 .  (3.18) 

The inequality (3.18) says that the inrerucrion in the Bogoliubov's Hamiltonian 
(2.8) is uttrucrive, This is the reason of the instability of H,B - @RA (3.3) which we 
shall discuss in the next section. 

Combining (3.6) and (3.18) we get 
P B ( P , P )  = P a ( P , P )  (3.19) 

for negative chemical potentials satisfying the condition (3.13). 
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4. Tbe Bogoliubw approximation for H i  and the variational pressure 

The boson Fock space 3,, can be written as a tensor product FOA @ 3i, where FA is 
the Fock space over the orthogonal complement of the constant functions in L 2 ( A )  
and 3,,, is the Fock space over the onedimensional subspace of constant functions 
(k = 0 mode). For every c E C let us consider the coherent vector in IF,*: 

where 0, is the vacuum of FOA. 

tonian H in 3,, is the operator H(c) on 4 defined by its quadratic form 
As has been clarified by Ginibre 1141, the Bogoliubov approximation to a Hamil- 

( + ; % f f ( c ) 4 )  = (%(c)@+3:,H+,(c)@$;) (4.2) 

for all $;,+; E 4 for which &(c) @ +;,2 are in the form domain of If. The 
advantage of this formulation of Bogoliubov's approximation is that it provides a 
variational principle for the pressure allowing one to determine the value of c. 

Proposition 4.1. (141 Let H be a self-adjoint operator in 3* such that exp(-PH) 
has finite trace for P > 0 and suppose that H(c) defined by (4.2) is self-adjoint in 
4 for every c E C. There, exp[-PH(c)] has finite trace in 3; for all c E C and 
p > 0, and 

TrF; exp[-PH(c)l < TrFAexp(-PH). (4.3) 

Proof. Using a product basis in 3* in calculating TrFA(-) = TrFoAmF;(-), one 
gets 

TrFA exp(-PH) 2 c [ + , ( c )  @ + L , e v - P H ) $ , ( c )  @ GL] 
" 

where {$;},, is an arbitrary orthonormal basis in 4. Now, whenever +,(c) @ $; 
are in the form domain of H ,  Peierl's inequality [23] gives, by the definition (4.2) of 
H(c), 

($dc)  @ iL,exp(-PH)Gdc) @ + h )  2 ex~[-B(Gh,H(c)+L)l 

Therefore 

TrFA exp(-PH) 2 S U P  xexP[-P($k,  ff(c)+L)l (4.4) {*l). n 

where the sup is over all orthonormal bases of 4 contained in the form domain of 
H(c).  The finiteness of the right-hand side of (4.4) implies that exp[-pH(c)] is 
trace-class in 4 and 

U 
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In the case H = H t  - pNA,  H ( c )  defined in (4.2) will be H ? ( c , p )  (equa- 
tion (2.4)). Denoting 

(4.5) 

one obtains the following. 

Corollary 4.2. If pn(P, p )  < 00 for some f l  > 0 and p E R, then fi;(p, f i ;  C )  < m 
for all c E e: and 

P?(P,P)  2 S U P  l ! M , p ;  c ) .  (4.6) 
C € C  

Otherwise stated, if for some P > 0 and p E R the supremum in (4.6) is infinite, 
then e x p [ - P (  H ;  - pN,,)]  will not have finite trace and therefore the finite-volume 
pressure p : ( p , p )  will not he defined (= +m). 

We are left with the task of calculating p:(p, p ;  c )  and its supremum. As already 
mentioned in section 2, if t = lclz E D,(p) ,  H f ( f i , p )  can be diagonalized by 
a canonical transformation, which is formally a tensor product of unitaries U,, each 
operating in the Fock space corresponding to a pairs { k , - k } k E h , ,  k # 0 for which 
v ( k )  f 0. Note that U, = W, for k supp v ( .  . .)-see (2.9). Under our assumption 
(+), for every finite A there will be afinife number of k E IC, for which v(k) f 0, 
so the above tensor product is well defined as a unitary in 4. We can therefore use 
(2.5) for all A;  p > 0, p E R and z E D A ( p )  to calculate p:(P,p;&):  

where E, ,  f, are given by (2.6)-(2.8). 

Proposition 4.3. Under the assumption (4). for every p > 0 and all sufficiently large 
A, p z ( p , p ;  c) is not bounded above, therefore e x p [ - p ( H !  - p N , ) ]  does not have 
finite trace. 

Proof. Let p > 0. Then, for A sufficiently large 

(4.8) 

and so D,,(p) is given by 

z > [W - e - ( A ) l / d O ) .  (4.9) 

For t E D,(p)  we use (4.7). As for z \ [ p  - ~ - ( A ) ] / v ( 0 ) ,  ~ n i n ~ ~ , ~ ~ ,  E ,  \ 0, it 
follows that p:(p ,p; , /Z )  i 00 due to the logarithmic terms in (4.7), corresponding 

0 to c k  = €-(A),  which diverge in this limit. 
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Proposition 4.4. Suppose ( 4 )  and, moreover, 

(4.10) 

Then, for all P > 0, fi  < 0 and for all sufficiently large A, the supremum of 
@ z ( P ,  p ;  fi) is attained at z = 0. Therefore in the thermodynamic limit 

P Y P , f i )  > P o ( P , f i )  P > 0 ,  f i  < 0 .  (4.11) 
Proof. If fi  < 0, D , ( f i )  = [0,00) and f i f (P, f i ;  fi), (4.7) will be differentiable with 
respect to x on (0,00), and will go to --oo for x - 00. Therefore its supremum is 
attained either at x = 0, or at a positive solution of the equation 

(4.12) 
Using (2.6)-(2.8) one calculates 

[ f k V ( O )  + ( f k  - h k ) v ( k ) l  ' (4.13) ax ax 
Clearly, if f i  < 0, d E k / a x  > 0 on (0,m) for all k E KA. Therefore 

1 - - --E (2 - "I> + f i  - x v ( 0 ) .  (4.14) 
ax 2v k#O 

ax 

Further, for fixed x > 0, 82 8=m is an increasing function of f i ,  because its deriva- 
tive 

is manifestly positive for fi  < 0. Thus 

B(OO,fi; x) < -(m,O; a 8  x )  E f , ( X ) .  ax ax (4.15) 

f A ( z )  is a concave function on ( 0 , ~ ) .  because 

Finally, fA(0) = 0 and 

is negative for sufficiently large A if condition (4.10) is fulfilled. Therefore 
f A ( X )  < 0 for x E (0,m). (4.17) 

Combining (4.14), (4.15) and (4.16), we conclude that (4.12) has no positive solution, 
wherefrom 
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Remarks. 
(i) The condition (4.10) is a weakness condition on the potential if v ( k )  = 

g . rp(k) with p some fmed function satisfying (4 ) ,  (4.10) holds for g sufficiently 
small. 

(ii) It is known [14] that Bogoliubov’s approximation is exact when operated on 
the full Hamiltonian H A  (equation (2.2)), under condition (4 ) .  i.e. (4.6) becomes 
an equality in the thermodynamic limit. (3.6) and (4.11) prove the exactness of 
Bogoliubov’s approximation ‘Hf:(JjE,p)1z=2 to f f f  - p N ,  for p < -$4(0). We 
conjecture that p B ( p , p )  = p o ( p , p )  for all p < 0. If that were true, and having in 
view proposition 4.3 too, it would follow that Bogoliubov’s Hamiltonian H z  predicts 
the same thermodynamics as the free Hamiltonian. 

5. A model for superfluidity 

As shown in the previous sections the Bogoliubov truncation is not able to provide 
rigorously an explanation of the phenomenon of superfluidity. 

Here we examine a possible way out of this situation. The idea, which in fact 
has already been put forward before [26], is to make a milder truncation of the 
full Hamiltonian (1.2). We propose here a ‘minimal’ extension of the Bogoliubov 
Hamiltonian (2.3) keeping, in addition to & v ( 0 ) C k a ; a j a k a o ,  all other ‘forward 
scattering’ t e r m  

1 

This term will ensure the superstability of the truncated Hamiltonian. Therefore we 
consider the model 

The Hamiltonian (5.1) resembles the one exploited in the Bogoliubov theory [2& 
221 after approximation no e N,. In our model (5.1), (i) we keep a,,a;-operators; 
(U) we treat the N,( N, - 1)-term as operator in 3,. 

The last term in (5.1) is recognized to be the interaction term of the so-called 
imperfect Bose gas model [27], which has been extensively studied in a rigorous 
manner [8-10,28]. 

The difficulty with the model Rf (5.1) in contradistinction to H I ,  is that the 
result of the Bogoliuhov approximation (2.2) no longer yields a bilinear Hamiltonian. 
This point is treated in an approximate way in [2&22,26], with the assumption that 
the total particle number N, is fied,  i.e. keeping the Ni-term unchanged while 
performing the Bogoliubov transformation in order to diagonalize the bilinear terms. 
It is clear that the Bogoliubov transformation does not preserve the particie number. 
In what follows we develop rigorous arguments to remedy fhis discrepancy or to prove 
the essential ingredients of superfluidity. 

First we show that our model (5.1) has good thermodynamic behaviour in the 
sense that the Hamiltonian is supersfable [23]. 
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Proposition 5.1. For each finite volume A, one has 

Proof. Use again the operator equality (3.2). Then one gets 

< . *  2 r2 \ .  iaka-ka ,  + a o - a - k a k )  + aoao(a;ak + a l k a M k j  2 -.;ak - .:Uo. 

Therefore, Hamiltonian (5.1) has the following estimate from below: 

As 0 < v ( k )  < v ( 0 )  one gets the lower bound (5.2), proving the superstability of the 
model. CI 

Now we perform a Bogoliubov approximation (4.2) in the second and third terms 
of H," (5.1) and we get the following refinement of the Bogoliubov model: 

with the implicit assumption that lc12 represents the  con^ -mate density in the zero 
mode. Clearly model (5.3) remains superstable. 

Remark that our model fi!,c (5.3) does not coincide with the Bogoliubov approx- 
hz t im @:(c) which we shou!d ohtain foll~wiag the procedure of section 4. The 
Hamiltonian (5.3) is still acting on the boson Fock space FA. Later we come back to 
the comparison between our model I??,, (5.3) and the full Bogoliubov approximation 
B f ( c )  of the model H," (5.1). 

In this work we are interested in the spectrum of the Hamiltonian I?:,c (5.3) 
in an equilibrium state at inverse temperature 4 = l / k T  and chemical potential p ,  
already in the thermodynamic limit. 

There are many ways to characterize such equilibrium states, e.g. as limit Gibhs 
states with special boundary conditions, or as states minimizing the free energy fun+ 
tional, etc. We will characterize them as the states satisfying the energv-sntropy 
balance correlation inequalities [29]. This characterization will be particularly useful 
for our purposes. Therefore we define the equilibrium state denoted by ( .  . . )B ,u ,  as 
a state satisfying for all local observables X (in the domain of the commutator with 
f?,",J the inequality 
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supplemented with the condensate equation 

1 
c = lim - (aJp,# 

A n  
(5.5) 

consistent with the Bogoliubov approximation (4.2). 

condensate density (see section 4). 
Condition (5.5) is in agreement with the usual interpretation of Icl2 being the 

Now we are interested in the solutions of (5.4), (5.5). 
Before going on we want to indicate already that the characterization (5.4) makes 

clear that the equilibrium state (. . . )R , l l  is not determined by the Hamiltonian f i f , c ,  
but by the commutator [ f i f , c , .  . .]. We will fully exploit this fact in the arguments 
below. 

Now we start the analysis of the solutions of (5.4) for the equilibrium states 

Remark first that, by applying the Bogoliubov approximation the gauge invariance 
is broken, i.e. HI\B is gauge-invariant, fit,. is no longer gauge-invariant for all c # 0. 

On the other hand the space translation invariance is conserved by the Bogoliubov 
approximation. Indeed, denote by rr the space translation automorphism over the 
dgtance I E R3. One checks that if a t  stands for the annihilation operator ab,  
referring to the volume A; then 

(' ' ' ) @ p .  

.A - i k . i a A + r  
= k - e  k 

and hence ~ ~ f i f , ~  = Hf+r,c, expressing the translation invariance of the system. 
Therefore any equilibrium state, i.e. from now on any solution of the correlation 
inequality (5.4), is in a natural way supposed to be rranslation-invariant. In other 
words we assume that there is no spontaneous breaking of this translation symmetry. 
Yet we are unable to show this property, but we strongly believe that this is not really 
a condition. Another way of looking at this is that we resrricr our attention to the 
translation-invariant equilibrium states. 

Translation-invariant states have the property that they can be decomposed into 
ergodic or ertremal translation-invariant states. In technical terms this means that there 
exists a probability measure denoted by U, with support on the set C of ergodic states 
and such that [30, chapter 41 

By this formula and because of the convexity of both sides of the correlation 
inequality (5.4), it is sufficient to consider the solutions TI E E of the inequality 

together with the equation (cf (5.5)) 

(5.6) 
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The main property of these ergodic states 9 is the existence of the ergodic means: 
for all local operators A, B and C the following relation holds - 

lim A q (  A (  $1 d z  rz C )  B )  = q(AB)q(C) 

or in a more mathematically sophisticated way it is expressed as 
1 1  9-weak-iim- d z r , C = q ( C )  

v j A  

In particular, take C = a ' ( y ) a ( y ) ,  y E R3 where a#(y) is the creation or annihila- 
tion operator at the point y. Then 

N A  = ldz r z ( a * ( o ) a ( o ) )  

and 

(5.8) 9 - weak - lim - N A  - - v(a*(O)a(O)) = p 
A V  

where p is the particle density in the state 9. 
Now we come back to the correlation inequality (5.6) for the ergodic states 9. 

As remarked above, we mncentrate on the commutator with the Hamiltonian. In 
particuiar iet us focus on the term N,( N-,, - I). -We have 

1 N ( N A  - l) 
, [ N A ( N , - ~ ) , X ] = ~ [ N A , X ] +  V [ N A , ~ ]  V '  

As X is a local observable, [N,, , XI also is local. Substituting this expression in 
the left-hand side of (SA), taking the limit A - CO, and using the properly (5.8), one 
gets 

1 
9 -  weak-lim-[N,,(N,- 1 ) , X ]  = 2 p ( q - w e a k - l i m [ N A , X ] )  

A V  A 

i.e. in the commutator term in (5.6) with the Hamiltonian one can substitute 
N,,(NA - 1) /V by 2pNA and obtain the equivalent system, defined by the following, 
so-called effective, Hamiltonian at density p 

+ ; v ( k ) ( a ; a l k c 2  + T2a&zk) + IC12 u ( k ) a j a ,  (5.9) 
k#O k#O 

As the density p is fixed, the chemical potential pA should be determined by the 
equation 

for all volumes A.  This fixes p,, as a function of 4 and p. Also (cf (5.7)) 

(5.10) 

(5.11) 

We have shown the following. 



3486 N Angelescu et a1 

Propsirion 5.2. The model (5.1) has a superstable Bogoliubov-approximated form 
Rf,, (5.3); its equilibrium states at fvred density p are wnvex combinations of the 
ergodic solutions q of the correlation inequalities. For local X 

with pA and c determined by (5.iij ana (5.iij. CI 

The result of all this is that our problem is reduced to the solution of the system 
with Hamiltonian (5.9). It is bilinear in the creation and annihilation operators. For 
each finite volume it can be diagonalized by a usual Bogoliubov transformation. In 
what follows the phase of the parameter c will not enter in an essential way. For the 
next analysis we take c = e, and the Hamiltonian (5.9) reads as follows: 

H i ( c ? f i A )  = E[&k - P A  + f v ( 0 )  + Ic12u(k)1a;ak  

k # o  

+ !'$ v ( k ) ( a ; a l k  + a-kak)  + [ v ( o ) p -  p,4]azao. (5.14) 
k#O 

After 
form 

Bogoliubov transformation ak = ukbk + ukKk (cf section 2), it takes the 

(5.15) 

(5.16) 

Remark that E t  > 0 only if p A  < pv(0 ) .  
To analyse the Bose-condensate problem for the Hamiltonian (5.14) one bas to 

take the limit A - Rd,  keeping the density p fixed and such that (5.10)-(5.12) are 
satisfied. 

A straightforward computation of (5.12) yields for each finite volume A 

(5.17) 

and of (5.10) 

From (5.17) and (5.18) one gets 
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where ji = limw, (see (5.10)) and 
A 

(5.20) 

(5.21) 

(5.22) 

lim P A  = ~ 4 0 )  2 p C ( P )  (5.23) 
A 

and 

l c l * = P - l d ( P 1 o , ) C ~ ) ~ p - f e ( P ) t O .  (5.24) 

As P + I d ( P , O , O )  is a decreasing function, there exists a low-temperature, high- 
density regime in which there is Bose condensation. A macroscopic portion of par- 
ticles occupy the lowest energy state k = 0 (see (5.12)). In particular, substituting 

result 
! h f i A  = pv(0) 2 g c ( P )  i!! the !p.si-p.rtic!e spr"pctnJIT! (5.16) we get the i l ? l . p t m  

A 

lim E: = + 2 1 ~ 1 ~ v ( k ) ) ] ' / ~ .  (5.25) 
A 

Hence. if cl: = k2!2m, then in the condensed phase we get for small k 

(5.26) 

and the 'roton' minimum around momenta k,,,, where v ' (k )  < 0 is minimal. 
Notice the difference in the expressions (5.26) and (2.12). In fact we proved the 

following. 

Proposition 5.3. The model (5.3), a special Bogoliubov-approximated form of (5.1), 
shows rigorously boson condensation in the low-temperature, highdensity regime and 

U has a linear spectrum near k = 0. 
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This result proves that our modified Bogoliubov model explains rigorously su- 
perfluidity according to the views of Landau and Lifshitz 1221. Remark that our 
model becomes superfluid only in the condensed phase IC)’ # 0 (see (5.26)) i.e. for 

Now we compare our ‘minimal’ extension of the Bogoliubov model (5.3) with 
Bogoliubov approximation (4.2) for the full Hamiltonian (5.1). 

The latter one gives us instead of (5.3) the operator in FA: 

P > P A P )  or P > P , ( P )  (see (S.U)-(S.W. 

where the first term coincides with the corresponding approximation for the Bo- 
goliubov Hamiltonian (see (2.4), (4.2)) and N i  = C k # o ~ ; a k .  Hamiltonian (5.27) 
commutes with the total momentum operator PA = Ck.oICa;ak in the volume A.  
Therefore, as above, referring to ergodic translation-invaruznl states qpr(  -) generated 
by (5.27), we can consider the effective Hamiltonian X ~ ( C , P )  corresponding to the 
fixed particle density p’ above the ground state IC = 0 (cf (5.10)) 

(5.28) 4(.+) p‘ = qP, -weak - l im(Ni /V)  
A 

where, according to (2.4) and (5.27), we have 

X t ( C , P )  = Z % C , P  - V ( 0 ) P ‘ ) .  (5.29) 

After Bogoliubov transformation (cf (2.5)-(2.9)) one gets 

(5.30) 
f i f ( c , p )  =CEkPlb.kbk+ZC(EkPl-f~)-V(~I~12-~I~14~(0)) 1 

k#o k#O 

where 

Comparing (5.31) with (5.16) we see that they coincide if one identifies IC]’ + p’ 
with p, which has a clear interpretation. Remark that in contrast with (5.15), Hamilto- 
nian (5.30) controls only density of particles in the excited states. Therefore, we can- 
not fu a total density of particles as we did above to examine Bose condensation-see 
(5.15) and (5.18). Instead one has to analyse solutions P I ( & ,  c )  of the self-consistency 
equation (5.28) for different p and IcI in the domain of stability of Hamiltonian 
(5.27). i.e. E( >, 0 or p - v(O)(p’ + 1 ~ 1 ’ )  < 0. 

By superstability of (5.1) and, consequently, of (5.27) the chemical potential P is 
allowed to run over R. Then turning to parameter I c I  we have to ensure the existence 
of the solution of (5.28) (corresponding to the existence of the particle density above 
the ground state) for any fiied P .  
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p’ = I d ( o , p  - v(o)(P‘  + I‘dz)> Icl) (5.32) 

where I d @ , , ,  y)  is the integral (5.20). This integral is a decreasing function of the 
variables I E R- and y E R, attaining its sup  at z = y = 0. According to (5.32) 
this cerrcsp;?o~ds tn the mzimsl! de~s-ity p‘. i.e. p6, - - . d \ y  r . ( R  n n\ - - p, Irf ,-. (<711) ,-.--,,. 
Simultaneously, condition I = 0 defines the critical value of the chemical potential 

pLc = V ( O ) P ,  = v ( o ) r , o , o , o ) .  (5.33) 

If p becomes larger than pc,  then (5.32) can be satisfied only if IcI # 0. This is to 
compensate the increment of p in the second argument of I ,  (note that p’ is already 
at its maximum), guaranteeing the stability condition. Then, as in the case of our 
model (5.3), the condensate density lEIZ # 0 for p > pc and it satisfies the following 
equations: 

(5.34) 

(cf (5.23), (5.24)). 
Hence, the Bogoliuhov approximation for the model (5.1) gives the same results 

for p, ,pc and the same equations for p’ and E as we got above in our approach 

It is worth remarking that one could also treat the Hamiltonian (5.27), furing the 
(5.3). 

parameter c, following the ansatz of section 4. Namely, referring to the inequality 

P A [ ~ ~ ( c , p ) l  < - PNA + v(0)p”A1 (5.35) 

(cf (4.6)) where pi satisfies (5.28). we can define E by the condition 

._.” I ... .J I - (5.36) s u p p A w i ( c , p N  =p , , i n i ( c ,~ j i .  
e 

Remark that for p < I L ~  and the parameter c in the domain of stability { c  : p - 
v(O)(p ’+  Iclz) < 0) the solution of (5.28) satisfies the inequality p ’ ( p , c )  > p / v ( O ) .  
Therefore, by the proposition 4.4 the sup  in (5.36) is attained at i. = 0. On the 
other hand, for p 2 pc the s u p  in (5.36) is attained on the boundary of the stability 
domain, corresponding to the first of the equations (5.34) constrained by the second 
equation for p’. So, we obtain the same result as above in (5.23)-(5.24). 

6. Concluding remarks 

We prnved that the cnaveatinai?! &gc!i&av E~i!!cxi3!! (2.3) is !her~dy~rmicr!!y 
unstable for p > 0 (section 4). while for p < 0 it seems to be equivalent to the ideal 
&se gas. The latter statement is proved only in the domain (3.14). 
We also show that the extension of the Hamiltonian (2.3), obtained by includ- 

ing the full forward scattering term (N2-term), yields a new model (5.1) which is 
superstable. It is rigorously solved in its presentation (5.3). Considering ergodic 
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translation-invariant equilibrium states yields rigorous arguments for deriving the ‘su- 
perfluid’ spectrum of the collective excitations, i.e. a gapless and linear spectrum for 
small wavevectors. This results in remedies to the conventional sloppy arguments 
in doing the Bogoliubov transformation for the Hamiltonian with the N2-term. We 
prove that the Hamiltonian (5.1) in its formulation (5.3) bas a ‘superfluid’ spectrum 
only in the condensed phase. This phase corresponds to Bose condensation o a r i n g  
at high densities ( p  > p,) or large chemical potentials ( p  > p,  = v(O)p,)  and, 
when it is satisfied, to the equality p = pu(0) .  This relation has been predicted on 
the basis of lowest-order perturbation theory and put in by hand in the conventional 
theory of superfluidity [20,21], together with the assumption that condensate density 
equals the total density. Our critical density p, coincides with the one of the ideal 
Bose gas. An analogous result is known for the imperfect Bose gas [S-lo]. 

For p < p, ( p  < p c )  the condensate density vanishes, and the pressure and the 
expression for the total particle density correspond with the equivalent one for the 
imperfect Bose gas [&lo]. But for p > p, the thermodynamic behaviour of our 
model is intrinsically different from the imperfect %se gas in many respects. The 
main difference can he seen as the outcome of the inequality 

$(f l ,  p )  = I d ( @ $  0 ,  IC1 f O) < r d ( f l , O , O )  E pc 

It implies that the density of particles above the ground state decreases (for p > p c )  
if the density of condensed particles lc12 increases. This is in contrast with the 
imperfect (as well as the ideal) Bose gas for which p ‘ ( p , p )  saturates at p,. 

Finally we remark that all our proofs are rigorous, except for the fact that we did 
not enter into the peculiarities and details of the thermodynamic limit as such. We 
have assumed always that the limit A -+ Zd exists. We leave this point to another 
occasion. 
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